Extensions of Bernstein's theorem on absolutely monotonic functions
نویسندگان
چکیده
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
POSITIVE MAPS, ABSOLUTELY MONOTONIC FUNCTIONS AND THE REGULARIZATION OF POSITIVE DEFINITE MATRICES By
We consider the problem of characterizing entrywise functions that preserve the cone of positive definite matrices when applied to every off-diagonal element. Our results extend theorems of Schoenberg [Duke Math. J. 9], Rudin [Duke Math. J, 26], Christensen and Ressel [Trans. Amer. Math. Soc., 243], and others, where similar problems were studied when the function is applied to all elements, in...
متن کاملA fixed point theorem for non-monotonic functions
We present a fixed point theorem for a class of (potentially) non-monotonic functions over specially structured complete lattices. The theorem has as a special case the KnasterTarski fixed point theorem when restricted to the case of monotonic functions and Kleene’s theorem when the functions are additionally continuous. From the practical side, the theorem has direct applications in the semant...
متن کاملOn extensions of Myers' theorem
Let M be a compact Riemannian manifold and h a smooth function on M. Let h (x) = inf jvj=1 (Ric x (v; v) ? 2Hess(h) x (v; v)). Here Ric x denotes the Ricci curvature at x and Hess(h) is the Hessian of h. Then M has nite fundamental group if h ? h < 0. Here h =: + 2L rh is the Bismut-Witten Laplacian. This leads to a quick proof of recent results on extension of Myers' theorem to mani-folds with...
متن کاملOn Some Covariance Inequalities for Monotonic and Non-monotonic Functions
Chebyshev’s integral inequality, also known as the covariance inequality, is an important problem in economics, finance, and decision making. In this paper we derive some covariance inequalities for monotonic and non-monotonic functions. The results developed in our paper could be useful in many applications in economics, finance, and decision making.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1986
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(86)80013-0